If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x)^2=196
We move all terms to the left:
(7x)^2-(196)=0
a = 7; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·7·(-196)
Δ = 5488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5488}=\sqrt{784*7}=\sqrt{784}*\sqrt{7}=28\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{7}}{2*7}=\frac{0-28\sqrt{7}}{14} =-\frac{28\sqrt{7}}{14} =-2\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{7}}{2*7}=\frac{0+28\sqrt{7}}{14} =\frac{28\sqrt{7}}{14} =2\sqrt{7} $
| 4.00+.80x=12.00+.30x | | 6x-2x+5=4+4x-1 | | 4x+6=4×-6 | | 64-x=90 | | 5x−5=x | | 4x^2+5=−12x | | p^-16=-16 | | 1+11=3x+3 | | X^4-4x=7 | | (7x+11)=(8x-26) | | 19y+36=150 | | 13+13z=78 | | 5(3-m1)=25 | | 8+7x=9x+4 | | 13x-9=121 | | 1÷2x=2 | | 5+z*3=78 | | p+1600=p(8*0.04) | | 0.6d+82=85 | | 3n−7+2n=8n+11 | | 5/(x+5)=3/(2x-4) | | 12+z*9=102 | | 26x-5=5+10x | | 4.00+.80x=12.00+.36x | | 6=v-6+v | | 9+14y=191 | | 1/4x+3)=2-x | | 2(k-7)=10 | | 7*y+14=21 | | 4+.80x=12+.36x | | {1}{4}(x+3)=2-x | | −16+5n=−7(−6+8n)+32 |